Global Research Map

The need for a crowd source Global Science Infrastructure Database and our efforts to start one Edward Balas

Research Support Motivation

- Science Research Coordinators need to understand
 - Big Science users and their needs
 - Facilities involved and how they are connected
 - How to resolve inter-domain performance problems
- Network Planners need anticipate future demand

Advocacy and Education Motivation

- Highlight the key role R&E networks play in enabling science and the latest major discoveries.
- Help people see how modern science happens
- Show how the R&E Network connect the people, instruments, compute and storage

Barriers

- Effort required
 - Manual entry is a daunting and thankless task
 - Requires inter-disciplinary skill
 - Requires persistent focus to fight change
- Resistance to share
 - Flow data has privacy concerns
 - Topology data can be sensitive for some
 - Not sure who is the authority

What is needed

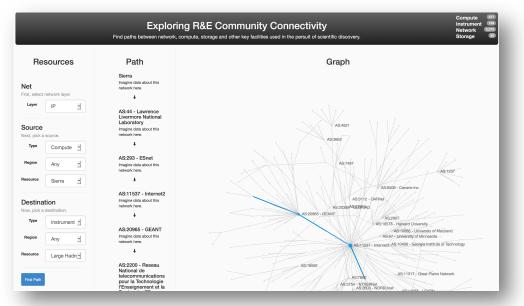
- An open database we can incrementally improve over periods that transcend individual grants
- A balanced approach to data sharing
- Use of crawling / automation to scale the effort
- An crowd source approach to leverage community knowledge

Global Research Map

- Create open source platform to facilitate network research and advocate for the global infrastructure used in modern scientific endeavor
- Combine automated web-mining with crowd sourced editing to create an open source database and advocacy platform
- Create useful and attractive experiences for technical and non-tech users

What is it?

- A system that allows us to document and study the relationships between
 - Layer2 and Layer3 networks
 - Supercomputer and Storage facilities
 - Scientific Instruments
 - Research Projects
 - People involved in these projects


Modest Beginning

- Targeted crawl + manual tune
 - 277 Super Computers
 - 159 Scientific Research Instruments
 - 2,273 Layer2 and Layer3 networks
- Sources
 - BGP route dumps and OSCARs topo data
 - Wikipedia, dmoz.org, top500
 - Manual input

What can we do today?

- Layer2 or Layer3 connectivity between
 - Networks
 - Computers
 - Instruments
 - Storage

 If interested, visit the Worldview or hunt me down for a demo

What we learned

- Existing sources like Wikipedia are a great starting point
- Lack structure needed to automate this process
- Encoding challenges
 - Facility to network
 - Facility to type
 - Facility to discipline
- Semi-automated techniques based on context and string similarity show promise

How you can help

- Suggest Sources
 - Of data to use as seeds for crawling
- Suggest Use Cases
 - That we have not thought of yet
- Contribute time
 - Editing or adding manual data
 - (We are here yet but someday)

Final thoughts

- Thanks
 - Grover Browning for contributing Indiana L2 data
 - Paul Schopis for contributing Ohio L2 data
- For more Information
 - Send me an email: <u>ebalas@iu.edu</u>
 - Grab me sometime this week

